| Step | Hyp | Ref | Expression | 
						
							| 1 |  | topdifinf.t | ⊢ 𝑇  =  { 𝑥  ∈  𝒫  𝐴  ∣  ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) ) } | 
						
							| 2 |  | difeq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ∖  𝑥 )  =  ( 𝐴  ∖  𝑦 ) ) | 
						
							| 3 | 2 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐴  ∖  𝑥 )  ∈  Fin  ↔  ( 𝐴  ∖  𝑦 )  ∈  Fin ) ) | 
						
							| 4 | 3 | notbid | ⊢ ( 𝑥  =  𝑦  →  ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ↔  ¬  ( 𝐴  ∖  𝑦 )  ∈  Fin ) ) | 
						
							| 5 |  | eqeq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  =  ∅  ↔  𝑦  =  ∅ ) ) | 
						
							| 6 |  | eqeq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  =  𝐴  ↔  𝑦  =  𝐴 ) ) | 
						
							| 7 | 5 6 | orbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 )  ↔  ( 𝑦  =  ∅  ∨  𝑦  =  𝐴 ) ) ) | 
						
							| 8 | 4 7 | orbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) )  ↔  ( ¬  ( 𝐴  ∖  𝑦 )  ∈  Fin  ∨  ( 𝑦  =  ∅  ∨  𝑦  =  𝐴 ) ) ) ) | 
						
							| 9 | 8 | cbvrabv | ⊢ { 𝑥  ∈  𝒫  𝐴  ∣  ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) ) }  =  { 𝑦  ∈  𝒫  𝐴  ∣  ( ¬  ( 𝐴  ∖  𝑦 )  ∈  Fin  ∨  ( 𝑦  =  ∅  ∨  𝑦  =  𝐴 ) ) } | 
						
							| 10 | 1 9 | eqtri | ⊢ 𝑇  =  { 𝑦  ∈  𝒫  𝐴  ∣  ( ¬  ( 𝐴  ∖  𝑦 )  ∈  Fin  ∨  ( 𝑦  =  ∅  ∨  𝑦  =  𝐴 ) ) } | 
						
							| 11 | 10 | topdifinffinlem | ⊢ ( 𝑇  ∈  ( TopOn ‘ 𝐴 )  →  𝐴  ∈  Fin ) |