Metamath Proof Explorer


Theorem topdifinffin

Description: Part of Exercise 3 of Munkres p. 83. The topology of all subsets x of A such that the complement of x in A is infinite, or x is the empty set, or x is all of A , is a topology only if A is finite. (Contributed by ML, 17-Jul-2020)

Ref Expression
Hypothesis topdifinf.t 𝑇 = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ¬ ( 𝐴𝑥 ) ∈ Fin ∨ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) }
Assertion topdifinffin ( 𝑇 ∈ ( TopOn ‘ 𝐴 ) → 𝐴 ∈ Fin )

Proof

Step Hyp Ref Expression
1 topdifinf.t 𝑇 = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ¬ ( 𝐴𝑥 ) ∈ Fin ∨ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) }
2 difeq2 ( 𝑥 = 𝑦 → ( 𝐴𝑥 ) = ( 𝐴𝑦 ) )
3 2 eleq1d ( 𝑥 = 𝑦 → ( ( 𝐴𝑥 ) ∈ Fin ↔ ( 𝐴𝑦 ) ∈ Fin ) )
4 3 notbid ( 𝑥 = 𝑦 → ( ¬ ( 𝐴𝑥 ) ∈ Fin ↔ ¬ ( 𝐴𝑦 ) ∈ Fin ) )
5 eqeq1 ( 𝑥 = 𝑦 → ( 𝑥 = ∅ ↔ 𝑦 = ∅ ) )
6 eqeq1 ( 𝑥 = 𝑦 → ( 𝑥 = 𝐴𝑦 = 𝐴 ) )
7 5 6 orbi12d ( 𝑥 = 𝑦 → ( ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ↔ ( 𝑦 = ∅ ∨ 𝑦 = 𝐴 ) ) )
8 4 7 orbi12d ( 𝑥 = 𝑦 → ( ( ¬ ( 𝐴𝑥 ) ∈ Fin ∨ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) ↔ ( ¬ ( 𝐴𝑦 ) ∈ Fin ∨ ( 𝑦 = ∅ ∨ 𝑦 = 𝐴 ) ) ) )
9 8 cbvrabv { 𝑥 ∈ 𝒫 𝐴 ∣ ( ¬ ( 𝐴𝑥 ) ∈ Fin ∨ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) } = { 𝑦 ∈ 𝒫 𝐴 ∣ ( ¬ ( 𝐴𝑦 ) ∈ Fin ∨ ( 𝑦 = ∅ ∨ 𝑦 = 𝐴 ) ) }
10 1 9 eqtri 𝑇 = { 𝑦 ∈ 𝒫 𝐴 ∣ ( ¬ ( 𝐴𝑦 ) ∈ Fin ∨ ( 𝑦 = ∅ ∨ 𝑦 = 𝐴 ) ) }
11 10 topdifinffinlem ( 𝑇 ∈ ( TopOn ‘ 𝐴 ) → 𝐴 ∈ Fin )