Step |
Hyp |
Ref |
Expression |
1 |
|
topdifinf.t |
⊢ 𝑇 = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ¬ ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) } |
2 |
|
difeq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑦 ) ) |
3 |
2
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) |
4 |
3
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ ( 𝐴 ∖ 𝑥 ) ∈ Fin ↔ ¬ ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) |
5 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ∅ ↔ 𝑦 = ∅ ) ) |
6 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝐴 ↔ 𝑦 = 𝐴 ) ) |
7 |
5 6
|
orbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ↔ ( 𝑦 = ∅ ∨ 𝑦 = 𝐴 ) ) ) |
8 |
4 7
|
orbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ¬ ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) ↔ ( ¬ ( 𝐴 ∖ 𝑦 ) ∈ Fin ∨ ( 𝑦 = ∅ ∨ 𝑦 = 𝐴 ) ) ) ) |
9 |
8
|
cbvrabv |
⊢ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ¬ ( 𝐴 ∖ 𝑥 ) ∈ Fin ∨ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) } = { 𝑦 ∈ 𝒫 𝐴 ∣ ( ¬ ( 𝐴 ∖ 𝑦 ) ∈ Fin ∨ ( 𝑦 = ∅ ∨ 𝑦 = 𝐴 ) ) } |
10 |
1 9
|
eqtri |
⊢ 𝑇 = { 𝑦 ∈ 𝒫 𝐴 ∣ ( ¬ ( 𝐴 ∖ 𝑦 ) ∈ Fin ∨ ( 𝑦 = ∅ ∨ 𝑦 = 𝐴 ) ) } |
11 |
10
|
topdifinffinlem |
⊢ ( 𝑇 ∈ ( TopOn ‘ 𝐴 ) → 𝐴 ∈ Fin ) |