Metamath Proof Explorer


Theorem topdifinffin

Description: Part of Exercise 3 of Munkres p. 83. The topology of all subsets x of A such that the complement of x in A is infinite, or x is the empty set, or x is all of A , is a topology only if A is finite. (Contributed by ML, 17-Jul-2020)

Ref Expression
Hypothesis topdifinf.t T = x 𝒫 A | ¬ A x Fin x = x = A
Assertion topdifinffin T TopOn A A Fin

Proof

Step Hyp Ref Expression
1 topdifinf.t T = x 𝒫 A | ¬ A x Fin x = x = A
2 difeq2 x = y A x = A y
3 2 eleq1d x = y A x Fin A y Fin
4 3 notbid x = y ¬ A x Fin ¬ A y Fin
5 eqeq1 x = y x = y =
6 eqeq1 x = y x = A y = A
7 5 6 orbi12d x = y x = x = A y = y = A
8 4 7 orbi12d x = y ¬ A x Fin x = x = A ¬ A y Fin y = y = A
9 8 cbvrabv x 𝒫 A | ¬ A x Fin x = x = A = y 𝒫 A | ¬ A y Fin y = y = A
10 1 9 eqtri T = y 𝒫 A | ¬ A y Fin y = y = A
11 10 topdifinffinlem T TopOn A A Fin