Step |
Hyp |
Ref |
Expression |
1 |
|
topdifinf.t |
|- T = { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) } |
2 |
|
difeq2 |
|- ( x = y -> ( A \ x ) = ( A \ y ) ) |
3 |
2
|
eleq1d |
|- ( x = y -> ( ( A \ x ) e. Fin <-> ( A \ y ) e. Fin ) ) |
4 |
3
|
notbid |
|- ( x = y -> ( -. ( A \ x ) e. Fin <-> -. ( A \ y ) e. Fin ) ) |
5 |
|
eqeq1 |
|- ( x = y -> ( x = (/) <-> y = (/) ) ) |
6 |
|
eqeq1 |
|- ( x = y -> ( x = A <-> y = A ) ) |
7 |
5 6
|
orbi12d |
|- ( x = y -> ( ( x = (/) \/ x = A ) <-> ( y = (/) \/ y = A ) ) ) |
8 |
4 7
|
orbi12d |
|- ( x = y -> ( ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) <-> ( -. ( A \ y ) e. Fin \/ ( y = (/) \/ y = A ) ) ) ) |
9 |
8
|
cbvrabv |
|- { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) } = { y e. ~P A | ( -. ( A \ y ) e. Fin \/ ( y = (/) \/ y = A ) ) } |
10 |
1 9
|
eqtri |
|- T = { y e. ~P A | ( -. ( A \ y ) e. Fin \/ ( y = (/) \/ y = A ) ) } |
11 |
10
|
topdifinffinlem |
|- ( T e. ( TopOn ` A ) -> A e. Fin ) |