Metamath Proof Explorer


Theorem topdifinffin

Description: Part of Exercise 3 of Munkres p. 83. The topology of all subsets x of A such that the complement of x in A is infinite, or x is the empty set, or x is all of A , is a topology only if A is finite. (Contributed by ML, 17-Jul-2020)

Ref Expression
Hypothesis topdifinf.t
|- T = { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) }
Assertion topdifinffin
|- ( T e. ( TopOn ` A ) -> A e. Fin )

Proof

Step Hyp Ref Expression
1 topdifinf.t
 |-  T = { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) }
2 difeq2
 |-  ( x = y -> ( A \ x ) = ( A \ y ) )
3 2 eleq1d
 |-  ( x = y -> ( ( A \ x ) e. Fin <-> ( A \ y ) e. Fin ) )
4 3 notbid
 |-  ( x = y -> ( -. ( A \ x ) e. Fin <-> -. ( A \ y ) e. Fin ) )
5 eqeq1
 |-  ( x = y -> ( x = (/) <-> y = (/) ) )
6 eqeq1
 |-  ( x = y -> ( x = A <-> y = A ) )
7 5 6 orbi12d
 |-  ( x = y -> ( ( x = (/) \/ x = A ) <-> ( y = (/) \/ y = A ) ) )
8 4 7 orbi12d
 |-  ( x = y -> ( ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) <-> ( -. ( A \ y ) e. Fin \/ ( y = (/) \/ y = A ) ) ) )
9 8 cbvrabv
 |-  { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) } = { y e. ~P A | ( -. ( A \ y ) e. Fin \/ ( y = (/) \/ y = A ) ) }
10 1 9 eqtri
 |-  T = { y e. ~P A | ( -. ( A \ y ) e. Fin \/ ( y = (/) \/ y = A ) ) }
11 10 topdifinffinlem
 |-  ( T e. ( TopOn ` A ) -> A e. Fin )