| Step | Hyp | Ref | Expression | 
						
							| 1 |  | topdifinf.t |  |-  T = { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) } | 
						
							| 2 |  | difeq2 |  |-  ( x = y -> ( A \ x ) = ( A \ y ) ) | 
						
							| 3 | 2 | eleq1d |  |-  ( x = y -> ( ( A \ x ) e. Fin <-> ( A \ y ) e. Fin ) ) | 
						
							| 4 | 3 | notbid |  |-  ( x = y -> ( -. ( A \ x ) e. Fin <-> -. ( A \ y ) e. Fin ) ) | 
						
							| 5 |  | eqeq1 |  |-  ( x = y -> ( x = (/) <-> y = (/) ) ) | 
						
							| 6 |  | eqeq1 |  |-  ( x = y -> ( x = A <-> y = A ) ) | 
						
							| 7 | 5 6 | orbi12d |  |-  ( x = y -> ( ( x = (/) \/ x = A ) <-> ( y = (/) \/ y = A ) ) ) | 
						
							| 8 | 4 7 | orbi12d |  |-  ( x = y -> ( ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) <-> ( -. ( A \ y ) e. Fin \/ ( y = (/) \/ y = A ) ) ) ) | 
						
							| 9 | 8 | cbvrabv |  |-  { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) } = { y e. ~P A | ( -. ( A \ y ) e. Fin \/ ( y = (/) \/ y = A ) ) } | 
						
							| 10 | 1 9 | eqtri |  |-  T = { y e. ~P A | ( -. ( A \ y ) e. Fin \/ ( y = (/) \/ y = A ) ) } | 
						
							| 11 | 10 | topdifinffinlem |  |-  ( T e. ( TopOn ` A ) -> A e. Fin ) |