Metamath Proof Explorer


Theorem topdifinf

Description: Part of Exercise 3 of Munkres p. 83. The topology of all subsets x of A such that the complement of x in A is infinite, or x is the empty set, or x is all of A , is a topology if and only if A is finite, in which case it is the trivial topology. (Contributed by ML, 17-Jul-2020)

Ref Expression
Hypothesis topdifinf.t
|- T = { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) }
Assertion topdifinf
|- ( ( T e. ( TopOn ` A ) <-> A e. Fin ) /\ ( T e. ( TopOn ` A ) -> T = { (/) , A } ) )

Proof

Step Hyp Ref Expression
1 topdifinf.t
 |-  T = { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) }
2 1 topdifinffin
 |-  ( T e. ( TopOn ` A ) -> A e. Fin )
3 1 topdifinfindis
 |-  ( A e. Fin -> T = { (/) , A } )
4 indistopon
 |-  ( A e. Fin -> { (/) , A } e. ( TopOn ` A ) )
5 3 4 eqeltrd
 |-  ( A e. Fin -> T e. ( TopOn ` A ) )
6 2 5 impbii
 |-  ( T e. ( TopOn ` A ) <-> A e. Fin )
7 2 3 syl
 |-  ( T e. ( TopOn ` A ) -> T = { (/) , A } )
8 6 7 pm3.2i
 |-  ( ( T e. ( TopOn ` A ) <-> A e. Fin ) /\ ( T e. ( TopOn ` A ) -> T = { (/) , A } ) )