Description: Part of Exercise 3 of Munkres p. 83. The topology of all subsets x of A such that the complement of x in A is infinite, or x is the empty set, or x is all of A , is a topology if and only if A is finite, in which case it is the trivial topology. (Contributed by ML, 17-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | topdifinf.t | |- T = { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) } |
|
Assertion | topdifinf | |- ( ( T e. ( TopOn ` A ) <-> A e. Fin ) /\ ( T e. ( TopOn ` A ) -> T = { (/) , A } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topdifinf.t | |- T = { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) } |
|
2 | 1 | topdifinffin | |- ( T e. ( TopOn ` A ) -> A e. Fin ) |
3 | 1 | topdifinfindis | |- ( A e. Fin -> T = { (/) , A } ) |
4 | indistopon | |- ( A e. Fin -> { (/) , A } e. ( TopOn ` A ) ) |
|
5 | 3 4 | eqeltrd | |- ( A e. Fin -> T e. ( TopOn ` A ) ) |
6 | 2 5 | impbii | |- ( T e. ( TopOn ` A ) <-> A e. Fin ) |
7 | 2 3 | syl | |- ( T e. ( TopOn ` A ) -> T = { (/) , A } ) |
8 | 6 7 | pm3.2i | |- ( ( T e. ( TopOn ` A ) <-> A e. Fin ) /\ ( T e. ( TopOn ` A ) -> T = { (/) , A } ) ) |