Metamath Proof Explorer


Theorem topdifinf

Description: Part of Exercise 3 of Munkres p. 83. The topology of all subsets x of A such that the complement of x in A is infinite, or x is the empty set, or x is all of A , is a topology if and only if A is finite, in which case it is the trivial topology. (Contributed by ML, 17-Jul-2020)

Ref Expression
Hypothesis topdifinf.t 𝑇 = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ¬ ( 𝐴𝑥 ) ∈ Fin ∨ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) }
Assertion topdifinf ( ( 𝑇 ∈ ( TopOn ‘ 𝐴 ) ↔ 𝐴 ∈ Fin ) ∧ ( 𝑇 ∈ ( TopOn ‘ 𝐴 ) → 𝑇 = { ∅ , 𝐴 } ) )

Proof

Step Hyp Ref Expression
1 topdifinf.t 𝑇 = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ¬ ( 𝐴𝑥 ) ∈ Fin ∨ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) }
2 1 topdifinffin ( 𝑇 ∈ ( TopOn ‘ 𝐴 ) → 𝐴 ∈ Fin )
3 1 topdifinfindis ( 𝐴 ∈ Fin → 𝑇 = { ∅ , 𝐴 } )
4 indistopon ( 𝐴 ∈ Fin → { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) )
5 3 4 eqeltrd ( 𝐴 ∈ Fin → 𝑇 ∈ ( TopOn ‘ 𝐴 ) )
6 2 5 impbii ( 𝑇 ∈ ( TopOn ‘ 𝐴 ) ↔ 𝐴 ∈ Fin )
7 2 3 syl ( 𝑇 ∈ ( TopOn ‘ 𝐴 ) → 𝑇 = { ∅ , 𝐴 } )
8 6 7 pm3.2i ( ( 𝑇 ∈ ( TopOn ‘ 𝐴 ) ↔ 𝐴 ∈ Fin ) ∧ ( 𝑇 ∈ ( TopOn ‘ 𝐴 ) → 𝑇 = { ∅ , 𝐴 } ) )