| Step | Hyp | Ref | Expression | 
						
							| 1 |  | velpw | ⊢ ( 𝑥  ∈  𝒫  𝐴  ↔  𝑥  ⊆  𝐴 ) | 
						
							| 2 |  | sseqin2 | ⊢ ( 𝑥  ⊆  𝐴  ↔  ( 𝐴  ∩  𝑥 )  =  𝑥 ) | 
						
							| 3 | 1 2 | bitri | ⊢ ( 𝑥  ∈  𝒫  𝐴  ↔  ( 𝐴  ∩  𝑥 )  =  𝑥 ) | 
						
							| 4 |  | eqeq1 | ⊢ ( ( 𝐴  ∩  𝑥 )  =  𝑥  →  ( ( 𝐴  ∩  𝑥 )  =  ∅  ↔  𝑥  =  ∅ ) ) | 
						
							| 5 | 3 4 | sylbi | ⊢ ( 𝑥  ∈  𝒫  𝐴  →  ( ( 𝐴  ∩  𝑥 )  =  ∅  ↔  𝑥  =  ∅ ) ) | 
						
							| 6 |  | disj3 | ⊢ ( ( 𝐴  ∩  𝑥 )  =  ∅  ↔  𝐴  =  ( 𝐴  ∖  𝑥 ) ) | 
						
							| 7 |  | eqcom | ⊢ ( 𝐴  =  ( 𝐴  ∖  𝑥 )  ↔  ( 𝐴  ∖  𝑥 )  =  𝐴 ) | 
						
							| 8 | 6 7 | bitri | ⊢ ( ( 𝐴  ∩  𝑥 )  =  ∅  ↔  ( 𝐴  ∖  𝑥 )  =  𝐴 ) | 
						
							| 9 | 5 8 | bitr3di | ⊢ ( 𝑥  ∈  𝒫  𝐴  →  ( 𝑥  =  ∅  ↔  ( 𝐴  ∖  𝑥 )  =  𝐴 ) ) | 
						
							| 10 |  | eqss | ⊢ ( 𝑥  =  𝐴  ↔  ( 𝑥  ⊆  𝐴  ∧  𝐴  ⊆  𝑥 ) ) | 
						
							| 11 |  | ssdif0 | ⊢ ( 𝐴  ⊆  𝑥  ↔  ( 𝐴  ∖  𝑥 )  =  ∅ ) | 
						
							| 12 | 11 | bicomi | ⊢ ( ( 𝐴  ∖  𝑥 )  =  ∅  ↔  𝐴  ⊆  𝑥 ) | 
						
							| 13 | 1 12 | anbi12i | ⊢ ( ( 𝑥  ∈  𝒫  𝐴  ∧  ( 𝐴  ∖  𝑥 )  =  ∅ )  ↔  ( 𝑥  ⊆  𝐴  ∧  𝐴  ⊆  𝑥 ) ) | 
						
							| 14 | 10 13 | bitr4i | ⊢ ( 𝑥  =  𝐴  ↔  ( 𝑥  ∈  𝒫  𝐴  ∧  ( 𝐴  ∖  𝑥 )  =  ∅ ) ) | 
						
							| 15 | 14 | baib | ⊢ ( 𝑥  ∈  𝒫  𝐴  →  ( 𝑥  =  𝐴  ↔  ( 𝐴  ∖  𝑥 )  =  ∅ ) ) | 
						
							| 16 | 9 15 | orbi12d | ⊢ ( 𝑥  ∈  𝒫  𝐴  →  ( ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 )  ↔  ( ( 𝐴  ∖  𝑥 )  =  𝐴  ∨  ( 𝐴  ∖  𝑥 )  =  ∅ ) ) ) | 
						
							| 17 |  | orcom | ⊢ ( ( ( 𝐴  ∖  𝑥 )  =  𝐴  ∨  ( 𝐴  ∖  𝑥 )  =  ∅ )  ↔  ( ( 𝐴  ∖  𝑥 )  =  ∅  ∨  ( 𝐴  ∖  𝑥 )  =  𝐴 ) ) | 
						
							| 18 | 16 17 | bitrdi | ⊢ ( 𝑥  ∈  𝒫  𝐴  →  ( ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 )  ↔  ( ( 𝐴  ∖  𝑥 )  =  ∅  ∨  ( 𝐴  ∖  𝑥 )  =  𝐴 ) ) ) | 
						
							| 19 | 18 | orbi2d | ⊢ ( 𝑥  ∈  𝒫  𝐴  →  ( ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) )  ↔  ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( ( 𝐴  ∖  𝑥 )  =  ∅  ∨  ( 𝐴  ∖  𝑥 )  =  𝐴 ) ) ) ) | 
						
							| 20 | 19 | bicomd | ⊢ ( 𝑥  ∈  𝒫  𝐴  →  ( ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( ( 𝐴  ∖  𝑥 )  =  ∅  ∨  ( 𝐴  ∖  𝑥 )  =  𝐴 ) )  ↔  ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) ) ) ) | 
						
							| 21 | 20 | rabbiia | ⊢ { 𝑥  ∈  𝒫  𝐴  ∣  ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( ( 𝐴  ∖  𝑥 )  =  ∅  ∨  ( 𝐴  ∖  𝑥 )  =  𝐴 ) ) }  =  { 𝑥  ∈  𝒫  𝐴  ∣  ( ¬  ( 𝐴  ∖  𝑥 )  ∈  Fin  ∨  ( 𝑥  =  ∅  ∨  𝑥  =  𝐴 ) ) } |