Metamath Proof Explorer


Theorem topdifinfeq

Description: Two different ways of defining the collection from Exercise 3 of Munkres p. 83. (Contributed by ML, 18-Jul-2020)

Ref Expression
Assertion topdifinfeq
|- { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( ( A \ x ) = (/) \/ ( A \ x ) = A ) ) } = { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) }

Proof

Step Hyp Ref Expression
1 velpw
 |-  ( x e. ~P A <-> x C_ A )
2 sseqin2
 |-  ( x C_ A <-> ( A i^i x ) = x )
3 1 2 bitri
 |-  ( x e. ~P A <-> ( A i^i x ) = x )
4 eqeq1
 |-  ( ( A i^i x ) = x -> ( ( A i^i x ) = (/) <-> x = (/) ) )
5 3 4 sylbi
 |-  ( x e. ~P A -> ( ( A i^i x ) = (/) <-> x = (/) ) )
6 disj3
 |-  ( ( A i^i x ) = (/) <-> A = ( A \ x ) )
7 eqcom
 |-  ( A = ( A \ x ) <-> ( A \ x ) = A )
8 6 7 bitri
 |-  ( ( A i^i x ) = (/) <-> ( A \ x ) = A )
9 5 8 bitr3di
 |-  ( x e. ~P A -> ( x = (/) <-> ( A \ x ) = A ) )
10 eqss
 |-  ( x = A <-> ( x C_ A /\ A C_ x ) )
11 ssdif0
 |-  ( A C_ x <-> ( A \ x ) = (/) )
12 11 bicomi
 |-  ( ( A \ x ) = (/) <-> A C_ x )
13 1 12 anbi12i
 |-  ( ( x e. ~P A /\ ( A \ x ) = (/) ) <-> ( x C_ A /\ A C_ x ) )
14 10 13 bitr4i
 |-  ( x = A <-> ( x e. ~P A /\ ( A \ x ) = (/) ) )
15 14 baib
 |-  ( x e. ~P A -> ( x = A <-> ( A \ x ) = (/) ) )
16 9 15 orbi12d
 |-  ( x e. ~P A -> ( ( x = (/) \/ x = A ) <-> ( ( A \ x ) = A \/ ( A \ x ) = (/) ) ) )
17 orcom
 |-  ( ( ( A \ x ) = A \/ ( A \ x ) = (/) ) <-> ( ( A \ x ) = (/) \/ ( A \ x ) = A ) )
18 16 17 bitrdi
 |-  ( x e. ~P A -> ( ( x = (/) \/ x = A ) <-> ( ( A \ x ) = (/) \/ ( A \ x ) = A ) ) )
19 18 orbi2d
 |-  ( x e. ~P A -> ( ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) <-> ( -. ( A \ x ) e. Fin \/ ( ( A \ x ) = (/) \/ ( A \ x ) = A ) ) ) )
20 19 bicomd
 |-  ( x e. ~P A -> ( ( -. ( A \ x ) e. Fin \/ ( ( A \ x ) = (/) \/ ( A \ x ) = A ) ) <-> ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) ) )
21 20 rabbiia
 |-  { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( ( A \ x ) = (/) \/ ( A \ x ) = A ) ) } = { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) }