Step |
Hyp |
Ref |
Expression |
1 |
|
velpw |
|- ( x e. ~P A <-> x C_ A ) |
2 |
|
sseqin2 |
|- ( x C_ A <-> ( A i^i x ) = x ) |
3 |
1 2
|
bitri |
|- ( x e. ~P A <-> ( A i^i x ) = x ) |
4 |
|
eqeq1 |
|- ( ( A i^i x ) = x -> ( ( A i^i x ) = (/) <-> x = (/) ) ) |
5 |
3 4
|
sylbi |
|- ( x e. ~P A -> ( ( A i^i x ) = (/) <-> x = (/) ) ) |
6 |
|
disj3 |
|- ( ( A i^i x ) = (/) <-> A = ( A \ x ) ) |
7 |
|
eqcom |
|- ( A = ( A \ x ) <-> ( A \ x ) = A ) |
8 |
6 7
|
bitri |
|- ( ( A i^i x ) = (/) <-> ( A \ x ) = A ) |
9 |
5 8
|
bitr3di |
|- ( x e. ~P A -> ( x = (/) <-> ( A \ x ) = A ) ) |
10 |
|
eqss |
|- ( x = A <-> ( x C_ A /\ A C_ x ) ) |
11 |
|
ssdif0 |
|- ( A C_ x <-> ( A \ x ) = (/) ) |
12 |
11
|
bicomi |
|- ( ( A \ x ) = (/) <-> A C_ x ) |
13 |
1 12
|
anbi12i |
|- ( ( x e. ~P A /\ ( A \ x ) = (/) ) <-> ( x C_ A /\ A C_ x ) ) |
14 |
10 13
|
bitr4i |
|- ( x = A <-> ( x e. ~P A /\ ( A \ x ) = (/) ) ) |
15 |
14
|
baib |
|- ( x e. ~P A -> ( x = A <-> ( A \ x ) = (/) ) ) |
16 |
9 15
|
orbi12d |
|- ( x e. ~P A -> ( ( x = (/) \/ x = A ) <-> ( ( A \ x ) = A \/ ( A \ x ) = (/) ) ) ) |
17 |
|
orcom |
|- ( ( ( A \ x ) = A \/ ( A \ x ) = (/) ) <-> ( ( A \ x ) = (/) \/ ( A \ x ) = A ) ) |
18 |
16 17
|
bitrdi |
|- ( x e. ~P A -> ( ( x = (/) \/ x = A ) <-> ( ( A \ x ) = (/) \/ ( A \ x ) = A ) ) ) |
19 |
18
|
orbi2d |
|- ( x e. ~P A -> ( ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) <-> ( -. ( A \ x ) e. Fin \/ ( ( A \ x ) = (/) \/ ( A \ x ) = A ) ) ) ) |
20 |
19
|
bicomd |
|- ( x e. ~P A -> ( ( -. ( A \ x ) e. Fin \/ ( ( A \ x ) = (/) \/ ( A \ x ) = A ) ) <-> ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) ) ) |
21 |
20
|
rabbiia |
|- { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( ( A \ x ) = (/) \/ ( A \ x ) = A ) ) } = { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) } |