| Step | Hyp | Ref | Expression | 
						
							| 1 |  | velpw |  |-  ( x e. ~P A <-> x C_ A ) | 
						
							| 2 |  | sseqin2 |  |-  ( x C_ A <-> ( A i^i x ) = x ) | 
						
							| 3 | 1 2 | bitri |  |-  ( x e. ~P A <-> ( A i^i x ) = x ) | 
						
							| 4 |  | eqeq1 |  |-  ( ( A i^i x ) = x -> ( ( A i^i x ) = (/) <-> x = (/) ) ) | 
						
							| 5 | 3 4 | sylbi |  |-  ( x e. ~P A -> ( ( A i^i x ) = (/) <-> x = (/) ) ) | 
						
							| 6 |  | disj3 |  |-  ( ( A i^i x ) = (/) <-> A = ( A \ x ) ) | 
						
							| 7 |  | eqcom |  |-  ( A = ( A \ x ) <-> ( A \ x ) = A ) | 
						
							| 8 | 6 7 | bitri |  |-  ( ( A i^i x ) = (/) <-> ( A \ x ) = A ) | 
						
							| 9 | 5 8 | bitr3di |  |-  ( x e. ~P A -> ( x = (/) <-> ( A \ x ) = A ) ) | 
						
							| 10 |  | eqss |  |-  ( x = A <-> ( x C_ A /\ A C_ x ) ) | 
						
							| 11 |  | ssdif0 |  |-  ( A C_ x <-> ( A \ x ) = (/) ) | 
						
							| 12 | 11 | bicomi |  |-  ( ( A \ x ) = (/) <-> A C_ x ) | 
						
							| 13 | 1 12 | anbi12i |  |-  ( ( x e. ~P A /\ ( A \ x ) = (/) ) <-> ( x C_ A /\ A C_ x ) ) | 
						
							| 14 | 10 13 | bitr4i |  |-  ( x = A <-> ( x e. ~P A /\ ( A \ x ) = (/) ) ) | 
						
							| 15 | 14 | baib |  |-  ( x e. ~P A -> ( x = A <-> ( A \ x ) = (/) ) ) | 
						
							| 16 | 9 15 | orbi12d |  |-  ( x e. ~P A -> ( ( x = (/) \/ x = A ) <-> ( ( A \ x ) = A \/ ( A \ x ) = (/) ) ) ) | 
						
							| 17 |  | orcom |  |-  ( ( ( A \ x ) = A \/ ( A \ x ) = (/) ) <-> ( ( A \ x ) = (/) \/ ( A \ x ) = A ) ) | 
						
							| 18 | 16 17 | bitrdi |  |-  ( x e. ~P A -> ( ( x = (/) \/ x = A ) <-> ( ( A \ x ) = (/) \/ ( A \ x ) = A ) ) ) | 
						
							| 19 | 18 | orbi2d |  |-  ( x e. ~P A -> ( ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) <-> ( -. ( A \ x ) e. Fin \/ ( ( A \ x ) = (/) \/ ( A \ x ) = A ) ) ) ) | 
						
							| 20 | 19 | bicomd |  |-  ( x e. ~P A -> ( ( -. ( A \ x ) e. Fin \/ ( ( A \ x ) = (/) \/ ( A \ x ) = A ) ) <-> ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) ) ) | 
						
							| 21 | 20 | rabbiia |  |-  { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( ( A \ x ) = (/) \/ ( A \ x ) = A ) ) } = { x e. ~P A | ( -. ( A \ x ) e. Fin \/ ( x = (/) \/ x = A ) ) } |