Metamath Proof Explorer


Theorem dissneq

Description: Any topology that contains every single-point set is the discrete topology. (Contributed by ML, 16-Jul-2020)

Ref Expression
Hypothesis dissneq.c 𝐶 = { 𝑢 ∣ ∃ 𝑥𝐴 𝑢 = { 𝑥 } }
Assertion dissneq ( ( 𝐶𝐵𝐵 ∈ ( TopOn ‘ 𝐴 ) ) → 𝐵 = 𝒫 𝐴 )

Proof

Step Hyp Ref Expression
1 dissneq.c 𝐶 = { 𝑢 ∣ ∃ 𝑥𝐴 𝑢 = { 𝑥 } }
2 sneq ( 𝑧 = 𝑥 → { 𝑧 } = { 𝑥 } )
3 2 eqeq2d ( 𝑧 = 𝑥 → ( 𝑢 = { 𝑧 } ↔ 𝑢 = { 𝑥 } ) )
4 3 cbvrexvw ( ∃ 𝑧𝐴 𝑢 = { 𝑧 } ↔ ∃ 𝑥𝐴 𝑢 = { 𝑥 } )
5 4 abbii { 𝑢 ∣ ∃ 𝑧𝐴 𝑢 = { 𝑧 } } = { 𝑢 ∣ ∃ 𝑥𝐴 𝑢 = { 𝑥 } }
6 1 5 eqtr4i 𝐶 = { 𝑢 ∣ ∃ 𝑧𝐴 𝑢 = { 𝑧 } }
7 6 dissneqlem ( ( 𝐶𝐵𝐵 ∈ ( TopOn ‘ 𝐴 ) ) → 𝐵 = 𝒫 𝐴 )