| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dissneq.c |
⊢ 𝐶 = { 𝑢 ∣ ∃ 𝑥 ∈ 𝐴 𝑢 = { 𝑥 } } |
| 2 |
|
topgele |
⊢ ( 𝐵 ∈ ( TopOn ‘ 𝐴 ) → ( { ∅ , 𝐴 } ⊆ 𝐵 ∧ 𝐵 ⊆ 𝒫 𝐴 ) ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ ( TopOn ‘ 𝐴 ) ) → ( { ∅ , 𝐴 } ⊆ 𝐵 ∧ 𝐵 ⊆ 𝒫 𝐴 ) ) |
| 4 |
3
|
simprd |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ ( TopOn ‘ 𝐴 ) ) → 𝐵 ⊆ 𝒫 𝐴 ) |
| 5 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) |
| 6 |
|
simp3 |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴 ∧ 𝐵 ∈ ( TopOn ‘ 𝐴 ) ) → 𝐵 ∈ ( TopOn ‘ 𝐴 ) ) |
| 7 |
|
df-ima |
⊢ ( ( 𝑧 ∈ 𝐴 ↦ { 𝑧 } ) “ 𝑥 ) = ran ( ( 𝑧 ∈ 𝐴 ↦ { 𝑧 } ) ↾ 𝑥 ) |
| 8 |
|
resmpt |
⊢ ( 𝑥 ⊆ 𝐴 → ( ( 𝑧 ∈ 𝐴 ↦ { 𝑧 } ) ↾ 𝑥 ) = ( 𝑧 ∈ 𝑥 ↦ { 𝑧 } ) ) |
| 9 |
8
|
rneqd |
⊢ ( 𝑥 ⊆ 𝐴 → ran ( ( 𝑧 ∈ 𝐴 ↦ { 𝑧 } ) ↾ 𝑥 ) = ran ( 𝑧 ∈ 𝑥 ↦ { 𝑧 } ) ) |
| 10 |
7 9
|
eqtrid |
⊢ ( 𝑥 ⊆ 𝐴 → ( ( 𝑧 ∈ 𝐴 ↦ { 𝑧 } ) “ 𝑥 ) = ran ( 𝑧 ∈ 𝑥 ↦ { 𝑧 } ) ) |
| 11 |
|
rnmptsn |
⊢ ran ( 𝑧 ∈ 𝑥 ↦ { 𝑧 } ) = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } |
| 12 |
10 11
|
eqtrdi |
⊢ ( 𝑥 ⊆ 𝐴 → ( ( 𝑧 ∈ 𝐴 ↦ { 𝑧 } ) “ 𝑥 ) = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ) |
| 13 |
|
imassrn |
⊢ ( ( 𝑧 ∈ 𝐴 ↦ { 𝑧 } ) “ 𝑥 ) ⊆ ran ( 𝑧 ∈ 𝐴 ↦ { 𝑧 } ) |
| 14 |
12 13
|
eqsstrrdi |
⊢ ( 𝑥 ⊆ 𝐴 → { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ⊆ ran ( 𝑧 ∈ 𝐴 ↦ { 𝑧 } ) ) |
| 15 |
|
rnmptsn |
⊢ ran ( 𝑧 ∈ 𝐴 ↦ { 𝑧 } ) = { 𝑢 ∣ ∃ 𝑧 ∈ 𝐴 𝑢 = { 𝑧 } } |
| 16 |
14 15
|
sseqtrdi |
⊢ ( 𝑥 ⊆ 𝐴 → { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ⊆ { 𝑢 ∣ ∃ 𝑧 ∈ 𝐴 𝑢 = { 𝑧 } } ) |
| 17 |
|
sneq |
⊢ ( 𝑥 = 𝑧 → { 𝑥 } = { 𝑧 } ) |
| 18 |
17
|
eqeq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑢 = { 𝑥 } ↔ 𝑢 = { 𝑧 } ) ) |
| 19 |
18
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑢 = { 𝑥 } ↔ ∃ 𝑧 ∈ 𝐴 𝑢 = { 𝑧 } ) |
| 20 |
19
|
abbii |
⊢ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐴 𝑢 = { 𝑥 } } = { 𝑢 ∣ ∃ 𝑧 ∈ 𝐴 𝑢 = { 𝑧 } } |
| 21 |
1 20
|
eqtri |
⊢ 𝐶 = { 𝑢 ∣ ∃ 𝑧 ∈ 𝐴 𝑢 = { 𝑧 } } |
| 22 |
16 21
|
sseqtrrdi |
⊢ ( 𝑥 ⊆ 𝐴 → { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ⊆ 𝐶 ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴 ) → { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ⊆ 𝐶 ) |
| 24 |
|
sstr |
⊢ ( ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) → { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ⊆ 𝐵 ) |
| 25 |
24
|
expcom |
⊢ ( 𝐶 ⊆ 𝐵 → ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ⊆ 𝐶 → { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ⊆ 𝐵 ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴 ) → ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ⊆ 𝐶 → { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ⊆ 𝐵 ) ) |
| 27 |
23 26
|
mpd |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴 ) → { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ⊆ 𝐵 ) |
| 28 |
27
|
3adant3 |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴 ∧ 𝐵 ∈ ( TopOn ‘ 𝐴 ) ) → { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ⊆ 𝐵 ) |
| 29 |
6 28
|
ssexd |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴 ∧ 𝐵 ∈ ( TopOn ‘ 𝐴 ) ) → { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ∈ V ) |
| 30 |
|
isset |
⊢ ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ∈ V ↔ ∃ 𝑦 𝑦 = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ) |
| 31 |
29 30
|
sylib |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴 ∧ 𝐵 ∈ ( TopOn ‘ 𝐴 ) ) → ∃ 𝑦 𝑦 = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ) |
| 32 |
|
eqid |
⊢ ( 𝑧 ∈ 𝐴 ↦ { 𝑧 } ) = ( 𝑧 ∈ 𝐴 ↦ { 𝑧 } ) |
| 33 |
|
eqid |
⊢ { 𝑢 ∣ ∃ 𝑧 ∈ 𝐴 𝑢 = { 𝑧 } } = { 𝑢 ∣ ∃ 𝑧 ∈ 𝐴 𝑢 = { 𝑧 } } |
| 34 |
32 33
|
mptsnun |
⊢ ( 𝑥 ⊆ 𝐴 → 𝑥 = ∪ ( ( 𝑧 ∈ 𝐴 ↦ { 𝑧 } ) “ 𝑥 ) ) |
| 35 |
12
|
unieqd |
⊢ ( 𝑥 ⊆ 𝐴 → ∪ ( ( 𝑧 ∈ 𝐴 ↦ { 𝑧 } ) “ 𝑥 ) = ∪ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ) |
| 36 |
34 35
|
eqtrd |
⊢ ( 𝑥 ⊆ 𝐴 → 𝑥 = ∪ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 = ∪ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ) |
| 38 |
27 37
|
jca |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴 ) → ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ⊆ 𝐵 ∧ 𝑥 = ∪ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ) ) |
| 39 |
|
sseq1 |
⊢ ( 𝑦 = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } → ( 𝑦 ⊆ 𝐵 ↔ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ⊆ 𝐵 ) ) |
| 40 |
|
unieq |
⊢ ( 𝑦 = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } → ∪ 𝑦 = ∪ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ) |
| 41 |
40
|
eqeq2d |
⊢ ( 𝑦 = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } → ( 𝑥 = ∪ 𝑦 ↔ 𝑥 = ∪ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ) ) |
| 42 |
39 41
|
anbi12d |
⊢ ( 𝑦 = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } → ( ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ↔ ( { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ⊆ 𝐵 ∧ 𝑥 = ∪ { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } ) ) ) |
| 43 |
38 42
|
syl5ibrcom |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴 ) → ( 𝑦 = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } → ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) |
| 44 |
43
|
eximdv |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴 ) → ( ∃ 𝑦 𝑦 = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } → ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) |
| 45 |
44
|
3adant3 |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴 ∧ 𝐵 ∈ ( TopOn ‘ 𝐴 ) ) → ( ∃ 𝑦 𝑦 = { 𝑢 ∣ ∃ 𝑧 ∈ 𝑥 𝑢 = { 𝑧 } } → ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) |
| 46 |
31 45
|
mpd |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴 ∧ 𝐵 ∈ ( TopOn ‘ 𝐴 ) ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) |
| 47 |
5 46
|
syl3an2b |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝑥 ∈ 𝒫 𝐴 ∧ 𝐵 ∈ ( TopOn ‘ 𝐴 ) ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) |
| 48 |
47
|
3com23 |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ ( TopOn ‘ 𝐴 ) ∧ 𝑥 ∈ 𝒫 𝐴 ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) |
| 49 |
48
|
3expia |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ ( TopOn ‘ 𝐴 ) ) → ( 𝑥 ∈ 𝒫 𝐴 → ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) |
| 50 |
|
topontop |
⊢ ( 𝐵 ∈ ( TopOn ‘ 𝐴 ) → 𝐵 ∈ Top ) |
| 51 |
|
tgtop |
⊢ ( 𝐵 ∈ Top → ( topGen ‘ 𝐵 ) = 𝐵 ) |
| 52 |
50 51
|
syl |
⊢ ( 𝐵 ∈ ( TopOn ‘ 𝐴 ) → ( topGen ‘ 𝐵 ) = 𝐵 ) |
| 53 |
52
|
eleq2d |
⊢ ( 𝐵 ∈ ( TopOn ‘ 𝐴 ) → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 54 |
|
eltg3 |
⊢ ( 𝐵 ∈ ( TopOn ‘ 𝐴 ) → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) |
| 55 |
53 54
|
bitr3d |
⊢ ( 𝐵 ∈ ( TopOn ‘ 𝐴 ) → ( 𝑥 ∈ 𝐵 ↔ ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) |
| 56 |
55
|
adantl |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ ( TopOn ‘ 𝐴 ) ) → ( 𝑥 ∈ 𝐵 ↔ ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) |
| 57 |
49 56
|
sylibrd |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ ( TopOn ‘ 𝐴 ) ) → ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 58 |
57
|
ssrdv |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ ( TopOn ‘ 𝐴 ) ) → 𝒫 𝐴 ⊆ 𝐵 ) |
| 59 |
4 58
|
eqssd |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ ( TopOn ‘ 𝐴 ) ) → 𝐵 = 𝒫 𝐴 ) |