Metamath Proof Explorer


Theorem dissneqlem

Description: This is the core of the proof of dissneq , but to avoid the distinct variables on the definitions, we split this proof into two. (Contributed by ML, 16-Jul-2020)

Ref Expression
Hypothesis dissneq.c C = u | x A u = x
Assertion dissneqlem C B B TopOn A B = 𝒫 A

Proof

Step Hyp Ref Expression
1 dissneq.c C = u | x A u = x
2 topgele B TopOn A A B B 𝒫 A
3 2 adantl C B B TopOn A A B B 𝒫 A
4 3 simprd C B B TopOn A B 𝒫 A
5 velpw x 𝒫 A x A
6 simp3 C B x A B TopOn A B TopOn A
7 df-ima z A z x = ran z A z x
8 resmpt x A z A z x = z x z
9 8 rneqd x A ran z A z x = ran z x z
10 7 9 syl5eq x A z A z x = ran z x z
11 rnmptsn ran z x z = u | z x u = z
12 10 11 eqtrdi x A z A z x = u | z x u = z
13 imassrn z A z x ran z A z
14 12 13 eqsstrrdi x A u | z x u = z ran z A z
15 rnmptsn ran z A z = u | z A u = z
16 14 15 sseqtrdi x A u | z x u = z u | z A u = z
17 sneq x = z x = z
18 17 eqeq2d x = z u = x u = z
19 18 cbvrexvw x A u = x z A u = z
20 19 abbii u | x A u = x = u | z A u = z
21 1 20 eqtri C = u | z A u = z
22 16 21 sseqtrrdi x A u | z x u = z C
23 22 adantl C B x A u | z x u = z C
24 sstr u | z x u = z C C B u | z x u = z B
25 24 expcom C B u | z x u = z C u | z x u = z B
26 25 adantr C B x A u | z x u = z C u | z x u = z B
27 23 26 mpd C B x A u | z x u = z B
28 27 3adant3 C B x A B TopOn A u | z x u = z B
29 6 28 ssexd C B x A B TopOn A u | z x u = z V
30 isset u | z x u = z V y y = u | z x u = z
31 29 30 sylib C B x A B TopOn A y y = u | z x u = z
32 eqid z A z = z A z
33 eqid u | z A u = z = u | z A u = z
34 32 33 mptsnun x A x = z A z x
35 12 unieqd x A z A z x = u | z x u = z
36 34 35 eqtrd x A x = u | z x u = z
37 36 adantl C B x A x = u | z x u = z
38 27 37 jca C B x A u | z x u = z B x = u | z x u = z
39 sseq1 y = u | z x u = z y B u | z x u = z B
40 unieq y = u | z x u = z y = u | z x u = z
41 40 eqeq2d y = u | z x u = z x = y x = u | z x u = z
42 39 41 anbi12d y = u | z x u = z y B x = y u | z x u = z B x = u | z x u = z
43 38 42 syl5ibrcom C B x A y = u | z x u = z y B x = y
44 43 eximdv C B x A y y = u | z x u = z y y B x = y
45 44 3adant3 C B x A B TopOn A y y = u | z x u = z y y B x = y
46 31 45 mpd C B x A B TopOn A y y B x = y
47 5 46 syl3an2b C B x 𝒫 A B TopOn A y y B x = y
48 47 3com23 C B B TopOn A x 𝒫 A y y B x = y
49 48 3expia C B B TopOn A x 𝒫 A y y B x = y
50 topontop B TopOn A B Top
51 tgtop B Top topGen B = B
52 50 51 syl B TopOn A topGen B = B
53 52 eleq2d B TopOn A x topGen B x B
54 eltg3 B TopOn A x topGen B y y B x = y
55 53 54 bitr3d B TopOn A x B y y B x = y
56 55 adantl C B B TopOn A x B y y B x = y
57 49 56 sylibrd C B B TopOn A x 𝒫 A x B
58 57 ssrdv C B B TopOn A 𝒫 A B
59 4 58 eqssd C B B TopOn A B = 𝒫 A