Metamath Proof Explorer


Theorem dissneq

Description: Any topology that contains every single-point set is the discrete topology. (Contributed by ML, 16-Jul-2020)

Ref Expression
Hypothesis dissneq.c
|- C = { u | E. x e. A u = { x } }
Assertion dissneq
|- ( ( C C_ B /\ B e. ( TopOn ` A ) ) -> B = ~P A )

Proof

Step Hyp Ref Expression
1 dissneq.c
 |-  C = { u | E. x e. A u = { x } }
2 sneq
 |-  ( z = x -> { z } = { x } )
3 2 eqeq2d
 |-  ( z = x -> ( u = { z } <-> u = { x } ) )
4 3 cbvrexvw
 |-  ( E. z e. A u = { z } <-> E. x e. A u = { x } )
5 4 abbii
 |-  { u | E. z e. A u = { z } } = { u | E. x e. A u = { x } }
6 1 5 eqtr4i
 |-  C = { u | E. z e. A u = { z } }
7 6 dissneqlem
 |-  ( ( C C_ B /\ B e. ( TopOn ` A ) ) -> B = ~P A )