Metamath Proof Explorer
Description: Existential elimination rule of natural deduction. (Contributed by ML, 17-Jul-2020)
|
|
Ref |
Expression |
|
Hypotheses |
exlimimd.1 |
|
|
|
exlimimd.2 |
|
|
Assertion |
exlimimd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
exlimimd.1 |
|
| 2 |
|
exlimimd.2 |
|
| 3 |
2
|
imp |
|
| 4 |
1 3
|
exlimddv |
|