Metamath Proof Explorer


Theorem exnel

Description: There is always a set not in y . (Contributed by Scott Fenton, 13-Dec-2010)

Ref Expression
Assertion exnel x ¬ x y

Proof

Step Hyp Ref Expression
1 elirrv ¬ y y
2 1 nfth x ¬ y y
3 ax8 x = y x y y y
4 3 con3d x = y ¬ y y ¬ x y
5 2 4 spime ¬ y y x ¬ x y
6 1 5 ax-mp x ¬ x y