Metamath Proof Explorer


Theorem expandexn

Description: Expand an existential quantifier to primitives while contracting a double negation. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypothesis expandexn.1 φ¬ψ
Assertion expandexn xφ¬xψ

Proof

Step Hyp Ref Expression
1 expandexn.1 φ¬ψ
2 1 exbii xφx¬ψ
3 exnal x¬ψ¬xψ
4 2 3 bitri xφ¬xψ