Metamath Proof Explorer


Theorem expandexn

Description: Expand an existential quantifier to primitives while contracting a double negation. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypothesis expandexn.1 φ ¬ ψ
Assertion expandexn x φ ¬ x ψ

Proof

Step Hyp Ref Expression
1 expandexn.1 φ ¬ ψ
2 1 exbii x φ x ¬ ψ
3 exnal x ¬ ψ ¬ x ψ
4 2 3 bitri x φ ¬ x ψ