Metamath Proof Explorer


Theorem expp1z

Description: Value of a nonzero complex number raised to an integer power plus one. (Contributed by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion expp1z AA0NAN+1=ANA

Proof

Step Hyp Ref Expression
1 1z 1
2 expaddz AA0N1AN+1=ANA1
3 1 2 mpanr2 AA0NAN+1=ANA1
4 3 3impa AA0NAN+1=ANA1
5 exp1 AA1=A
6 5 3ad2ant1 AA0NA1=A
7 6 oveq2d AA0NANA1=ANA
8 4 7 eqtrd AA0NAN+1=ANA