Metamath Proof Explorer


Theorem exsnrex

Description: There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018)

Ref Expression
Assertion exsnrex xM=xxMM=x

Proof

Step Hyp Ref Expression
1 vsnid xx
2 eleq2 M=xxMxx
3 1 2 mpbiri M=xxM
4 3 pm4.71ri M=xxMM=x
5 4 exbii xM=xxxMM=x
6 df-rex xMM=xxxMM=x
7 5 6 bitr4i xM=xxMM=x