Metamath Proof Explorer


Theorem extvfvalf

Description: The "variable extension" function maps polynomials with variables indexed in J to polynomials with variables indexed in I . (Contributed by Thierry Arnoux, 25-Jan-2026)

Ref Expression
Hypotheses extvfvvcl.d D = h 0 I | finSupp 0 h
extvfvvcl.3 0 ˙ = 0 R
extvfvvcl.i φ I V
extvfvvcl.r φ R Ring
extvfvvcl.b B = Base R
extvfvvcl.j J = I A
extvfvvcl.m M = Base J mPoly R
extvfvvcl.1 φ A I
extvfvalf.n N = Base I mPoly R
Assertion extvfvalf Could not format assertion : No typesetting found for |- ( ph -> ( ( I extendVars R ) ` A ) : M --> N ) with typecode |-

Proof

Step Hyp Ref Expression
1 extvfvvcl.d D = h 0 I | finSupp 0 h
2 extvfvvcl.3 0 ˙ = 0 R
3 extvfvvcl.i φ I V
4 extvfvvcl.r φ R Ring
5 extvfvvcl.b B = Base R
6 extvfvvcl.j J = I A
7 extvfvvcl.m M = Base J mPoly R
8 extvfvvcl.1 φ A I
9 extvfvalf.n N = Base I mPoly R
10 ovex 0 I V
11 1 10 rabex2 D V
12 11 a1i φ f M D V
13 12 mptexd φ f M x D if x A = 0 f x J 0 ˙ V
14 1 2 3 4 8 6 7 extvfval Could not format ( ph -> ( ( I extendVars R ) ` A ) = ( f e. M |-> ( x e. D |-> if ( ( x ` A ) = 0 , ( f ` ( x |` J ) ) , .0. ) ) ) ) : No typesetting found for |- ( ph -> ( ( I extendVars R ) ` A ) = ( f e. M |-> ( x e. D |-> if ( ( x ` A ) = 0 , ( f ` ( x |` J ) ) , .0. ) ) ) ) with typecode |-
15 3 adantr φ f M I V
16 4 adantr φ f M R Ring
17 8 adantr φ f M A I
18 simpr φ f M f M
19 1 2 15 16 5 6 7 17 18 9 extvfvcl Could not format ( ( ph /\ f e. M ) -> ( ( ( I extendVars R ) ` A ) ` f ) e. N ) : No typesetting found for |- ( ( ph /\ f e. M ) -> ( ( ( I extendVars R ) ` A ) ` f ) e. N ) with typecode |-
20 13 14 19 fmpt2d Could not format ( ph -> ( ( I extendVars R ) ` A ) : M --> N ) : No typesetting found for |- ( ph -> ( ( I extendVars R ) ` A ) : M --> N ) with typecode |-