Metamath Proof Explorer


Theorem f1cocnv1

Description: Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011)

Ref Expression
Assertion f1cocnv1 F:A1-1BF-1F=IA

Proof

Step Hyp Ref Expression
1 f1f1orn F:A1-1BF:A1-1 ontoranF
2 f1ococnv1 F:A1-1 ontoranFF-1F=IA
3 1 2 syl F:A1-1BF-1F=IA