Metamath Proof Explorer


Theorem funcoeqres

Description: Express a constraint on a composition as a constraint on the composand. (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Assertion funcoeqres FunGFG=HFranG=HG-1

Proof

Step Hyp Ref Expression
1 funcocnv2 FunGGG-1=IranG
2 1 coeq2d FunGFGG-1=FIranG
3 coass FGG-1=FGG-1
4 3 eqcomi FGG-1=FGG-1
5 coires1 FIranG=FranG
6 2 4 5 3eqtr3g FunGFGG-1=FranG
7 coeq1 FG=HFGG-1=HG-1
8 6 7 sylan9req FunGFG=HFranG=HG-1