Metamath Proof Explorer


Theorem f1cocnv2

Description: Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011)

Ref Expression
Assertion f1cocnv2 F:A1-1BFF-1=IranF

Proof

Step Hyp Ref Expression
1 f1fun F:A1-1BFunF
2 funcocnv2 FunFFF-1=IranF
3 1 2 syl F:A1-1BFF-1=IranF