Metamath Proof Explorer


Theorem f1eq123d

Description: Equality deduction for one-to-one functions. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses f1eq123d.1 φF=G
f1eq123d.2 φA=B
f1eq123d.3 φC=D
Assertion f1eq123d φF:A1-1CG:B1-1D

Proof

Step Hyp Ref Expression
1 f1eq123d.1 φF=G
2 f1eq123d.2 φA=B
3 f1eq123d.3 φC=D
4 f1eq1 F=GF:A1-1CG:A1-1C
5 1 4 syl φF:A1-1CG:A1-1C
6 f1eq2 A=BG:A1-1CG:B1-1C
7 2 6 syl φG:A1-1CG:B1-1C
8 f1eq3 C=DG:B1-1CG:B1-1D
9 3 8 syl φG:B1-1CG:B1-1D
10 5 7 9 3bitrd φF:A1-1CG:B1-1D