Metamath Proof Explorer


Theorem f1imaen2g

Description: If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (This version of f1imaeng does not need ax-rep .) (Contributed by Mario Carneiro, 16-Nov-2014) (Revised by Mario Carneiro, 25-Jun-2015)

Ref Expression
Assertion f1imaen2g F:A1-1BBVCACVFCC

Proof

Step Hyp Ref Expression
1 simprr F:A1-1BBVCACVCV
2 simplr F:A1-1BBVCACVBV
3 f1f F:A1-1BF:AB
4 fimass F:ABFCB
5 3 4 syl F:A1-1BFCB
6 5 ad2antrr F:A1-1BBVCACVFCB
7 2 6 ssexd F:A1-1BBVCACVFCV
8 f1ores F:A1-1BCAFC:C1-1 ontoFC
9 8 ad2ant2r F:A1-1BBVCACVFC:C1-1 ontoFC
10 f1oen2g CVFCVFC:C1-1 ontoFCCFC
11 1 7 9 10 syl3anc F:A1-1BBVCACVCFC
12 11 ensymd F:A1-1BBVCACVFCC