Metamath Proof Explorer


Theorem f1ocnvb

Description: A relation is a one-to-one onto function iff its converse is a one-to-one onto function with domain and codomain/range interchanged. (Contributed by NM, 8-Dec-2003)

Ref Expression
Assertion f1ocnvb RelFF:A1-1 ontoBF-1:B1-1 ontoA

Proof

Step Hyp Ref Expression
1 f1ocnv F:A1-1 ontoBF-1:B1-1 ontoA
2 f1ocnv F-1:B1-1 ontoAF-1-1:A1-1 ontoB
3 dfrel2 RelFF-1-1=F
4 f1oeq1 F-1-1=FF-1-1:A1-1 ontoBF:A1-1 ontoB
5 3 4 sylbi RelFF-1-1:A1-1 ontoBF:A1-1 ontoB
6 2 5 imbitrid RelFF-1:B1-1 ontoAF:A1-1 ontoB
7 1 6 impbid2 RelFF:A1-1 ontoBF-1:B1-1 ontoA