Metamath Proof Explorer


Theorem f1ocnvfvrneq

Description: If the values of a one-to-one function for two arguments from the range of the function are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017)

Ref Expression
Assertion f1ocnvfvrneq F:A1-1BCranFDranFF-1C=F-1DC=D

Proof

Step Hyp Ref Expression
1 f1f1orn F:A1-1BF:A1-1 ontoranF
2 f1ocnv F:A1-1 ontoranFF-1:ranF1-1 ontoA
3 f1of1 F-1:ranF1-1 ontoAF-1:ranF1-1A
4 f1veqaeq F-1:ranF1-1ACranFDranFF-1C=F-1DC=D
5 4 ex F-1:ranF1-1ACranFDranFF-1C=F-1DC=D
6 1 2 3 5 4syl F:A1-1BCranFDranFF-1C=F-1DC=D
7 6 imp F:A1-1BCranFDranFF-1C=F-1DC=D