Metamath Proof Explorer


Theorem f1ocpbllem

Description: Lemma for f1ocpbl . (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypothesis f1ocpbl.f φF:V1-1 ontoX
Assertion f1ocpbllem φAVBVCVDVFA=FCFB=FDA=CB=D

Proof

Step Hyp Ref Expression
1 f1ocpbl.f φF:V1-1 ontoX
2 f1of1 F:V1-1 ontoXF:V1-1X
3 1 2 syl φF:V1-1X
4 3 3ad2ant1 φAVBVCVDVF:V1-1X
5 simp2l φAVBVCVDVAV
6 simp3l φAVBVCVDVCV
7 f1fveq F:V1-1XAVCVFA=FCA=C
8 4 5 6 7 syl12anc φAVBVCVDVFA=FCA=C
9 simp2r φAVBVCVDVBV
10 simp3r φAVBVCVDVDV
11 f1fveq F:V1-1XBVDVFB=FDB=D
12 4 9 10 11 syl12anc φAVBVCVDVFB=FDB=D
13 8 12 anbi12d φAVBVCVDVFA=FCFB=FDA=CB=D