Metamath Proof Explorer


Theorem f1ovscpbl

Description: An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypothesis f1ocpbl.f φF:V1-1 ontoX
Assertion f1ovscpbl φAKBVCVFB=FCFA+˙B=FA+˙C

Proof

Step Hyp Ref Expression
1 f1ocpbl.f φF:V1-1 ontoX
2 f1of1 F:V1-1 ontoXF:V1-1X
3 1 2 syl φF:V1-1X
4 3 adantr φAKBVCVF:V1-1X
5 simpr2 φAKBVCVBV
6 simpr3 φAKBVCVCV
7 f1fveq F:V1-1XBVCVFB=FCB=C
8 4 5 6 7 syl12anc φAKBVCVFB=FCB=C
9 oveq2 B=CA+˙B=A+˙C
10 9 fveq2d B=CFA+˙B=FA+˙C
11 8 10 syl6bi φAKBVCVFB=FCFA+˙B=FA+˙C