Metamath Proof Explorer


Theorem f1resf1

Description: The restriction of an injective function is injective. (Contributed by AV, 28-Jun-2022)

Ref Expression
Assertion f1resf1 F:A1-1BCAFC:CDFC:C1-1D

Proof

Step Hyp Ref Expression
1 f1ssres F:A1-1BCAFC:C1-1B
2 1 3adant3 F:A1-1BCAFC:CDFC:C1-1B
3 frn FC:CDranFCD
4 3 3ad2ant3 F:A1-1BCAFC:CDranFCD
5 f1ssr FC:C1-1BranFCDFC:C1-1D
6 2 4 5 syl2anc F:A1-1BCAFC:CDFC:C1-1D