Metamath Proof Explorer


Theorem f1ssres

Description: A function that is one-to-one is also one-to-one on any subclass of its domain. (Contributed by Mario Carneiro, 17-Jan-2015)

Ref Expression
Assertion f1ssres F:A1-1BCAFC:C1-1B

Proof

Step Hyp Ref Expression
1 f1f F:A1-1BF:AB
2 fssres F:ABCAFC:CB
3 1 2 sylan F:A1-1BCAFC:CB
4 df-f1 F:A1-1BF:ABFunF-1
5 funres11 FunF-1FunFC-1
6 4 5 simplbiim F:A1-1BFunFC-1
7 6 adantr F:A1-1BCAFunFC-1
8 df-f1 FC:C1-1BFC:CBFunFC-1
9 3 7 8 sylanbrc F:A1-1BCAFC:C1-1B