Metamath Proof Explorer


Theorem fctop2

Description: The finite complement topology on a set A . Example 3 in Munkres p. 77. (This version of fctop requires the Axiom of Infinity.) (Contributed by FL, 20-Aug-2006)

Ref Expression
Assertion fctop2 AVx𝒫A|Axωx=TopOnA

Proof

Step Hyp Ref Expression
1 isfinite AxFinAxω
2 1 orbi1i AxFinx=Axωx=
3 2 rabbii x𝒫A|AxFinx==x𝒫A|Axωx=
4 fctop AVx𝒫A|AxFinx=TopOnA
5 3 4 eqeltrrid AVx𝒫A|Axωx=TopOnA