Metamath Proof Explorer


Theorem cctop

Description: The countable complement topology on a set A . Example 4 in Munkres p. 77. (Contributed by FL, 23-Aug-2006) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion cctop AVx𝒫A|Axωx=TopOnA

Proof

Step Hyp Ref Expression
1 difeq2 x=yAx=Ay
2 1 breq1d x=yAxωAyω
3 eqeq1 x=yx=y=
4 2 3 orbi12d x=yAxωx=Ayωy=
5 uniss yx𝒫A|Axωx=yx𝒫A|Axωx=
6 ssrab2 x𝒫A|Axωx=𝒫A
7 sspwuni x𝒫A|Axωx=𝒫Ax𝒫A|Axωx=A
8 6 7 mpbi x𝒫A|Axωx=A
9 5 8 sstrdi yx𝒫A|Axωx=yA
10 vuniex yV
11 10 elpw y𝒫AyA
12 9 11 sylibr yx𝒫A|Axωx=y𝒫A
13 uni0c y=zyz=
14 13 notbii ¬y=¬zyz=
15 rexnal zy¬z=¬zyz=
16 14 15 bitr4i ¬y=zy¬z=
17 ssel2 yx𝒫A|Axωx=zyzx𝒫A|Axωx=
18 difeq2 x=zAx=Az
19 18 breq1d x=zAxωAzω
20 eqeq1 x=zx=z=
21 19 20 orbi12d x=zAxωx=Azωz=
22 21 elrab zx𝒫A|Axωx=z𝒫AAzωz=
23 17 22 sylib yx𝒫A|Axωx=zyz𝒫AAzωz=
24 23 simprd yx𝒫A|Axωx=zyAzωz=
25 24 ord yx𝒫A|Axωx=zy¬Azωz=
26 25 con1d yx𝒫A|Axωx=zy¬z=Azω
27 26 imp yx𝒫A|Axωx=zy¬z=Azω
28 ctex AzωAzV
29 28 adantl yx𝒫A|Axωx=zy¬z=AzωAzV
30 simpllr yx𝒫A|Axωx=zy¬z=Azωzy
31 elssuni zyzy
32 sscon zyAyAz
33 30 31 32 3syl yx𝒫A|Axωx=zy¬z=AzωAyAz
34 ssdomg AzVAyAzAyAz
35 29 33 34 sylc yx𝒫A|Axωx=zy¬z=AzωAyAz
36 domtr AyAzAzωAyω
37 35 36 sylancom yx𝒫A|Axωx=zy¬z=AzωAyω
38 27 37 mpdan yx𝒫A|Axωx=zy¬z=Ayω
39 38 rexlimdva2 yx𝒫A|Axωx=zy¬z=Ayω
40 16 39 biimtrid yx𝒫A|Axωx=¬y=Ayω
41 40 con1d yx𝒫A|Axωx=¬Ayωy=
42 41 orrd yx𝒫A|Axωx=Ayωy=
43 4 12 42 elrabd yx𝒫A|Axωx=yx𝒫A|Axωx=
44 43 ax-gen yyx𝒫A|Axωx=yx𝒫A|Axωx=
45 difeq2 x=yAx=Ay
46 45 breq1d x=yAxωAyω
47 eqeq1 x=yx=y=
48 46 47 orbi12d x=yAxωx=Ayωy=
49 48 elrab yx𝒫A|Axωx=y𝒫AAyωy=
50 ssinss1 yAyzA
51 vex yV
52 51 elpw y𝒫AyA
53 51 inex1 yzV
54 53 elpw yz𝒫AyzA
55 50 52 54 3imtr4i y𝒫Ayz𝒫A
56 55 ad2antrr y𝒫AAyωy=z𝒫AAzωz=yz𝒫A
57 difindi Ayz=AyAz
58 unctb AyωAzωAyAzω
59 57 58 eqbrtrid AyωAzωAyzω
60 59 orcd AyωAzωAyzωyz=
61 ineq1 y=yz=z
62 0in z=
63 61 62 eqtrdi y=yz=
64 63 olcd y=Ayzωyz=
65 ineq2 z=yz=y
66 in0 y=
67 65 66 eqtrdi z=yz=
68 67 olcd z=Ayzωyz=
69 60 64 68 ccase2 Ayωy=Azωz=Ayzωyz=
70 69 ad2ant2l y𝒫AAyωy=z𝒫AAzωz=Ayzωyz=
71 56 70 jca y𝒫AAyωy=z𝒫AAzωz=yz𝒫AAyzωyz=
72 49 22 71 syl2anb yx𝒫A|Axωx=zx𝒫A|Axωx=yz𝒫AAyzωyz=
73 difeq2 x=yzAx=Ayz
74 73 breq1d x=yzAxωAyzω
75 eqeq1 x=yzx=yz=
76 74 75 orbi12d x=yzAxωx=Ayzωyz=
77 76 elrab yzx𝒫A|Axωx=yz𝒫AAyzωyz=
78 72 77 sylibr yx𝒫A|Axωx=zx𝒫A|Axωx=yzx𝒫A|Axωx=
79 78 rgen2 yx𝒫A|Axωx=zx𝒫A|Axωx=yzx𝒫A|Axωx=
80 44 79 pm3.2i yyx𝒫A|Axωx=yx𝒫A|Axωx=yx𝒫A|Axωx=zx𝒫A|Axωx=yzx𝒫A|Axωx=
81 pwexg AV𝒫AV
82 rabexg 𝒫AVx𝒫A|Axωx=V
83 istopg x𝒫A|Axωx=Vx𝒫A|Axωx=Topyyx𝒫A|Axωx=yx𝒫A|Axωx=yx𝒫A|Axωx=zx𝒫A|Axωx=yzx𝒫A|Axωx=
84 81 82 83 3syl AVx𝒫A|Axωx=Topyyx𝒫A|Axωx=yx𝒫A|Axωx=yx𝒫A|Axωx=zx𝒫A|Axωx=yzx𝒫A|Axωx=
85 80 84 mpbiri AVx𝒫A|Axωx=Top
86 difeq2 x=AAx=AA
87 difid AA=
88 86 87 eqtrdi x=AAx=
89 88 breq1d x=AAxωω
90 eqeq1 x=Ax=A=
91 89 90 orbi12d x=AAxωx=ωA=
92 pwidg AVA𝒫A
93 omex ωV
94 93 0dom ω
95 94 orci ωA=
96 95 a1i AVωA=
97 91 92 96 elrabd AVAx𝒫A|Axωx=
98 elssuni Ax𝒫A|Axωx=Ax𝒫A|Axωx=
99 97 98 syl AVAx𝒫A|Axωx=
100 8 a1i AVx𝒫A|Axωx=A
101 99 100 eqssd AVA=x𝒫A|Axωx=
102 istopon x𝒫A|Axωx=TopOnAx𝒫A|Axωx=TopA=x𝒫A|Axωx=
103 85 101 102 sylanbrc AVx𝒫A|Axωx=TopOnA