| Step |
Hyp |
Ref |
Expression |
| 1 |
|
difeq2 |
|- ( x = U. y -> ( A \ x ) = ( A \ U. y ) ) |
| 2 |
1
|
breq1d |
|- ( x = U. y -> ( ( A \ x ) ~<_ _om <-> ( A \ U. y ) ~<_ _om ) ) |
| 3 |
|
eqeq1 |
|- ( x = U. y -> ( x = (/) <-> U. y = (/) ) ) |
| 4 |
2 3
|
orbi12d |
|- ( x = U. y -> ( ( ( A \ x ) ~<_ _om \/ x = (/) ) <-> ( ( A \ U. y ) ~<_ _om \/ U. y = (/) ) ) ) |
| 5 |
|
uniss |
|- ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y C_ U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) |
| 6 |
|
ssrab2 |
|- { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } C_ ~P A |
| 7 |
|
sspwuni |
|- ( { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } C_ ~P A <-> U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } C_ A ) |
| 8 |
6 7
|
mpbi |
|- U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } C_ A |
| 9 |
5 8
|
sstrdi |
|- ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y C_ A ) |
| 10 |
|
vuniex |
|- U. y e. _V |
| 11 |
10
|
elpw |
|- ( U. y e. ~P A <-> U. y C_ A ) |
| 12 |
9 11
|
sylibr |
|- ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y e. ~P A ) |
| 13 |
|
uni0c |
|- ( U. y = (/) <-> A. z e. y z = (/) ) |
| 14 |
13
|
notbii |
|- ( -. U. y = (/) <-> -. A. z e. y z = (/) ) |
| 15 |
|
rexnal |
|- ( E. z e. y -. z = (/) <-> -. A. z e. y z = (/) ) |
| 16 |
14 15
|
bitr4i |
|- ( -. U. y = (/) <-> E. z e. y -. z = (/) ) |
| 17 |
|
ssel2 |
|- ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) -> z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) |
| 18 |
|
difeq2 |
|- ( x = z -> ( A \ x ) = ( A \ z ) ) |
| 19 |
18
|
breq1d |
|- ( x = z -> ( ( A \ x ) ~<_ _om <-> ( A \ z ) ~<_ _om ) ) |
| 20 |
|
eqeq1 |
|- ( x = z -> ( x = (/) <-> z = (/) ) ) |
| 21 |
19 20
|
orbi12d |
|- ( x = z -> ( ( ( A \ x ) ~<_ _om \/ x = (/) ) <-> ( ( A \ z ) ~<_ _om \/ z = (/) ) ) ) |
| 22 |
21
|
elrab |
|- ( z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } <-> ( z e. ~P A /\ ( ( A \ z ) ~<_ _om \/ z = (/) ) ) ) |
| 23 |
17 22
|
sylib |
|- ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) -> ( z e. ~P A /\ ( ( A \ z ) ~<_ _om \/ z = (/) ) ) ) |
| 24 |
23
|
simprd |
|- ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) -> ( ( A \ z ) ~<_ _om \/ z = (/) ) ) |
| 25 |
24
|
ord |
|- ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) -> ( -. ( A \ z ) ~<_ _om -> z = (/) ) ) |
| 26 |
25
|
con1d |
|- ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) -> ( -. z = (/) -> ( A \ z ) ~<_ _om ) ) |
| 27 |
26
|
imp |
|- ( ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) /\ -. z = (/) ) -> ( A \ z ) ~<_ _om ) |
| 28 |
|
ctex |
|- ( ( A \ z ) ~<_ _om -> ( A \ z ) e. _V ) |
| 29 |
28
|
adantl |
|- ( ( ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) /\ -. z = (/) ) /\ ( A \ z ) ~<_ _om ) -> ( A \ z ) e. _V ) |
| 30 |
|
simpllr |
|- ( ( ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) /\ -. z = (/) ) /\ ( A \ z ) ~<_ _om ) -> z e. y ) |
| 31 |
|
elssuni |
|- ( z e. y -> z C_ U. y ) |
| 32 |
|
sscon |
|- ( z C_ U. y -> ( A \ U. y ) C_ ( A \ z ) ) |
| 33 |
30 31 32
|
3syl |
|- ( ( ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) /\ -. z = (/) ) /\ ( A \ z ) ~<_ _om ) -> ( A \ U. y ) C_ ( A \ z ) ) |
| 34 |
|
ssdomg |
|- ( ( A \ z ) e. _V -> ( ( A \ U. y ) C_ ( A \ z ) -> ( A \ U. y ) ~<_ ( A \ z ) ) ) |
| 35 |
29 33 34
|
sylc |
|- ( ( ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) /\ -. z = (/) ) /\ ( A \ z ) ~<_ _om ) -> ( A \ U. y ) ~<_ ( A \ z ) ) |
| 36 |
|
domtr |
|- ( ( ( A \ U. y ) ~<_ ( A \ z ) /\ ( A \ z ) ~<_ _om ) -> ( A \ U. y ) ~<_ _om ) |
| 37 |
35 36
|
sylancom |
|- ( ( ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) /\ -. z = (/) ) /\ ( A \ z ) ~<_ _om ) -> ( A \ U. y ) ~<_ _om ) |
| 38 |
27 37
|
mpdan |
|- ( ( ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. y ) /\ -. z = (/) ) -> ( A \ U. y ) ~<_ _om ) |
| 39 |
38
|
rexlimdva2 |
|- ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> ( E. z e. y -. z = (/) -> ( A \ U. y ) ~<_ _om ) ) |
| 40 |
16 39
|
biimtrid |
|- ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> ( -. U. y = (/) -> ( A \ U. y ) ~<_ _om ) ) |
| 41 |
40
|
con1d |
|- ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> ( -. ( A \ U. y ) ~<_ _om -> U. y = (/) ) ) |
| 42 |
41
|
orrd |
|- ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> ( ( A \ U. y ) ~<_ _om \/ U. y = (/) ) ) |
| 43 |
4 12 42
|
elrabd |
|- ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) |
| 44 |
43
|
ax-gen |
|- A. y ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) |
| 45 |
|
difeq2 |
|- ( x = y -> ( A \ x ) = ( A \ y ) ) |
| 46 |
45
|
breq1d |
|- ( x = y -> ( ( A \ x ) ~<_ _om <-> ( A \ y ) ~<_ _om ) ) |
| 47 |
|
eqeq1 |
|- ( x = y -> ( x = (/) <-> y = (/) ) ) |
| 48 |
46 47
|
orbi12d |
|- ( x = y -> ( ( ( A \ x ) ~<_ _om \/ x = (/) ) <-> ( ( A \ y ) ~<_ _om \/ y = (/) ) ) ) |
| 49 |
48
|
elrab |
|- ( y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } <-> ( y e. ~P A /\ ( ( A \ y ) ~<_ _om \/ y = (/) ) ) ) |
| 50 |
|
ssinss1 |
|- ( y C_ A -> ( y i^i z ) C_ A ) |
| 51 |
|
vex |
|- y e. _V |
| 52 |
51
|
elpw |
|- ( y e. ~P A <-> y C_ A ) |
| 53 |
51
|
inex1 |
|- ( y i^i z ) e. _V |
| 54 |
53
|
elpw |
|- ( ( y i^i z ) e. ~P A <-> ( y i^i z ) C_ A ) |
| 55 |
50 52 54
|
3imtr4i |
|- ( y e. ~P A -> ( y i^i z ) e. ~P A ) |
| 56 |
55
|
ad2antrr |
|- ( ( ( y e. ~P A /\ ( ( A \ y ) ~<_ _om \/ y = (/) ) ) /\ ( z e. ~P A /\ ( ( A \ z ) ~<_ _om \/ z = (/) ) ) ) -> ( y i^i z ) e. ~P A ) |
| 57 |
|
difindi |
|- ( A \ ( y i^i z ) ) = ( ( A \ y ) u. ( A \ z ) ) |
| 58 |
|
unctb |
|- ( ( ( A \ y ) ~<_ _om /\ ( A \ z ) ~<_ _om ) -> ( ( A \ y ) u. ( A \ z ) ) ~<_ _om ) |
| 59 |
57 58
|
eqbrtrid |
|- ( ( ( A \ y ) ~<_ _om /\ ( A \ z ) ~<_ _om ) -> ( A \ ( y i^i z ) ) ~<_ _om ) |
| 60 |
59
|
orcd |
|- ( ( ( A \ y ) ~<_ _om /\ ( A \ z ) ~<_ _om ) -> ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) |
| 61 |
|
ineq1 |
|- ( y = (/) -> ( y i^i z ) = ( (/) i^i z ) ) |
| 62 |
|
0in |
|- ( (/) i^i z ) = (/) |
| 63 |
61 62
|
eqtrdi |
|- ( y = (/) -> ( y i^i z ) = (/) ) |
| 64 |
63
|
olcd |
|- ( y = (/) -> ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) |
| 65 |
|
ineq2 |
|- ( z = (/) -> ( y i^i z ) = ( y i^i (/) ) ) |
| 66 |
|
in0 |
|- ( y i^i (/) ) = (/) |
| 67 |
65 66
|
eqtrdi |
|- ( z = (/) -> ( y i^i z ) = (/) ) |
| 68 |
67
|
olcd |
|- ( z = (/) -> ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) |
| 69 |
60 64 68
|
ccase2 |
|- ( ( ( ( A \ y ) ~<_ _om \/ y = (/) ) /\ ( ( A \ z ) ~<_ _om \/ z = (/) ) ) -> ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) |
| 70 |
69
|
ad2ant2l |
|- ( ( ( y e. ~P A /\ ( ( A \ y ) ~<_ _om \/ y = (/) ) ) /\ ( z e. ~P A /\ ( ( A \ z ) ~<_ _om \/ z = (/) ) ) ) -> ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) |
| 71 |
56 70
|
jca |
|- ( ( ( y e. ~P A /\ ( ( A \ y ) ~<_ _om \/ y = (/) ) ) /\ ( z e. ~P A /\ ( ( A \ z ) ~<_ _om \/ z = (/) ) ) ) -> ( ( y i^i z ) e. ~P A /\ ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) ) |
| 72 |
49 22 71
|
syl2anb |
|- ( ( y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) -> ( ( y i^i z ) e. ~P A /\ ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) ) |
| 73 |
|
difeq2 |
|- ( x = ( y i^i z ) -> ( A \ x ) = ( A \ ( y i^i z ) ) ) |
| 74 |
73
|
breq1d |
|- ( x = ( y i^i z ) -> ( ( A \ x ) ~<_ _om <-> ( A \ ( y i^i z ) ) ~<_ _om ) ) |
| 75 |
|
eqeq1 |
|- ( x = ( y i^i z ) -> ( x = (/) <-> ( y i^i z ) = (/) ) ) |
| 76 |
74 75
|
orbi12d |
|- ( x = ( y i^i z ) -> ( ( ( A \ x ) ~<_ _om \/ x = (/) ) <-> ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) ) |
| 77 |
76
|
elrab |
|- ( ( y i^i z ) e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } <-> ( ( y i^i z ) e. ~P A /\ ( ( A \ ( y i^i z ) ) ~<_ _om \/ ( y i^i z ) = (/) ) ) ) |
| 78 |
72 77
|
sylibr |
|- ( ( y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } /\ z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) -> ( y i^i z ) e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) |
| 79 |
78
|
rgen2 |
|- A. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } A. z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ( y i^i z ) e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } |
| 80 |
44 79
|
pm3.2i |
|- ( A. y ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) /\ A. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } A. z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ( y i^i z ) e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) |
| 81 |
|
pwexg |
|- ( A e. V -> ~P A e. _V ) |
| 82 |
|
rabexg |
|- ( ~P A e. _V -> { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. _V ) |
| 83 |
|
istopg |
|- ( { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. _V -> ( { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. Top <-> ( A. y ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) /\ A. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } A. z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ( y i^i z ) e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) ) ) |
| 84 |
81 82 83
|
3syl |
|- ( A e. V -> ( { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. Top <-> ( A. y ( y C_ { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> U. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) /\ A. y e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } A. z e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ( y i^i z ) e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) ) ) |
| 85 |
80 84
|
mpbiri |
|- ( A e. V -> { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. Top ) |
| 86 |
|
difeq2 |
|- ( x = A -> ( A \ x ) = ( A \ A ) ) |
| 87 |
|
difid |
|- ( A \ A ) = (/) |
| 88 |
86 87
|
eqtrdi |
|- ( x = A -> ( A \ x ) = (/) ) |
| 89 |
88
|
breq1d |
|- ( x = A -> ( ( A \ x ) ~<_ _om <-> (/) ~<_ _om ) ) |
| 90 |
|
eqeq1 |
|- ( x = A -> ( x = (/) <-> A = (/) ) ) |
| 91 |
89 90
|
orbi12d |
|- ( x = A -> ( ( ( A \ x ) ~<_ _om \/ x = (/) ) <-> ( (/) ~<_ _om \/ A = (/) ) ) ) |
| 92 |
|
pwidg |
|- ( A e. V -> A e. ~P A ) |
| 93 |
|
omex |
|- _om e. _V |
| 94 |
93
|
0dom |
|- (/) ~<_ _om |
| 95 |
94
|
orci |
|- ( (/) ~<_ _om \/ A = (/) ) |
| 96 |
95
|
a1i |
|- ( A e. V -> ( (/) ~<_ _om \/ A = (/) ) ) |
| 97 |
91 92 96
|
elrabd |
|- ( A e. V -> A e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) |
| 98 |
|
elssuni |
|- ( A e. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } -> A C_ U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) |
| 99 |
97 98
|
syl |
|- ( A e. V -> A C_ U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) |
| 100 |
8
|
a1i |
|- ( A e. V -> U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } C_ A ) |
| 101 |
99 100
|
eqssd |
|- ( A e. V -> A = U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) |
| 102 |
|
istopon |
|- ( { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. ( TopOn ` A ) <-> ( { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. Top /\ A = U. { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } ) ) |
| 103 |
85 101 102
|
sylanbrc |
|- ( A e. V -> { x e. ~P A | ( ( A \ x ) ~<_ _om \/ x = (/) ) } e. ( TopOn ` A ) ) |