Metamath Proof Explorer


Theorem feq2

Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994)

Ref Expression
Assertion feq2 A=BF:ACF:BC

Proof

Step Hyp Ref Expression
1 fneq2 A=BFFnAFFnB
2 1 anbi1d A=BFFnAranFCFFnBranFC
3 df-f F:ACFFnAranFC
4 df-f F:BCFFnBranFC
5 2 3 4 3bitr4g A=BF:ACF:BC