Metamath Proof Explorer


Theorem filnet

Description: A filter has the same convergence and clustering properties as some net. (Contributed by Jeff Hankins, 12-Dec-2009) (Revised by Mario Carneiro, 8-Aug-2015)

Ref Expression
Assertion filnet FFilXdDirRelff:domdXF=XFilMapfrantaild

Proof

Step Hyp Ref Expression
1 eqid nFn×n=nFn×n
2 eqid xy|xnFn×nynFn×n1sty1stx=xy|xnFn×nynFn×n1sty1stx
3 1 2 filnetlem4 FFilXdDirRelff:domdXF=XFilMapfrantaild