Metamath Proof Explorer


Theorem fimacnv

Description: The preimage of the codomain of a function is the function's domain. (Contributed by FL, 25-Jan-2007) (Proof shortened by AV, 20-Sep-2024)

Ref Expression
Assertion fimacnv F:ABF-1B=A

Proof

Step Hyp Ref Expression
1 frn F:ABranFB
2 cnvimassrndm ranFBF-1B=domF
3 1 2 syl F:ABF-1B=domF
4 fdm F:ABdomF=A
5 3 4 eqtrd F:ABF-1B=A