Metamath Proof Explorer


Theorem fimact

Description: The image by a function of a countable set is countable. (Contributed by Thierry Arnoux, 27-Mar-2018)

Ref Expression
Assertion fimact AωFunFFAω

Proof

Step Hyp Ref Expression
1 ctex AωAV
2 imadomg AVFunFFAA
3 2 imp AVFunFFAA
4 1 3 sylan AωFunFFAA
5 simpl AωFunFAω
6 domtr FAAAωFAω
7 4 5 6 syl2anc AωFunFFAω