Metamath Proof Explorer


Theorem fin1a2lem1

Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 7-Nov-2014)

Ref Expression
Hypothesis fin1a2lem.a S=xOnsucx
Assertion fin1a2lem1 AOnSA=sucA

Proof

Step Hyp Ref Expression
1 fin1a2lem.a S=xOnsucx
2 onsuc AOnsucAOn
3 suceq a=Asuca=sucA
4 suceq x=asucx=suca
5 4 cbvmptv xOnsucx=aOnsuca
6 1 5 eqtri S=aOnsuca
7 3 6 fvmptg AOnsucAOnSA=sucA
8 2 7 mpdan AOnSA=sucA