Metamath Proof Explorer


Theorem fin1a2lem2

Description: Lemma for fin1a2 . The successor operation on the ordinal numbers is injective or one-to-one. Lemma 1.17 of Schloeder p. 2. (Contributed by Stefan O'Rear, 7-Nov-2014)

Ref Expression
Hypothesis fin1a2lem.a S=xOnsucx
Assertion fin1a2lem2 S:On1-1On

Proof

Step Hyp Ref Expression
1 fin1a2lem.a S=xOnsucx
2 onsuc xOnsucxOn
3 1 2 fmpti S:OnOn
4 1 fin1a2lem1 aOnSa=suca
5 1 fin1a2lem1 bOnSb=sucb
6 4 5 eqeqan12d aOnbOnSa=Sbsuca=sucb
7 suc11 aOnbOnsuca=sucba=b
8 6 7 bitrd aOnbOnSa=Sba=b
9 8 biimpd aOnbOnSa=Sba=b
10 9 rgen2 aOnbOnSa=Sba=b
11 dff13 S:On1-1OnS:OnOnaOnbOnSa=Sba=b
12 3 10 11 mpbir2an S:On1-1On