Metamath Proof Explorer


Theorem fint

Description: Function into an intersection. (Contributed by NM, 14-Oct-1999) (Proof shortened by Andrew Salmon, 17-Sep-2011)

Ref Expression
Hypothesis fint.1 B
Assertion fint F:ABxBF:Ax

Proof

Step Hyp Ref Expression
1 fint.1 B
2 ssint ranFBxBranFx
3 2 anbi2i FFnAranFBFFnAxBranFx
4 r19.28zv BxBFFnAranFxFFnAxBranFx
5 1 4 ax-mp xBFFnAranFxFFnAxBranFx
6 3 5 bitr4i FFnAranFBxBFFnAranFx
7 df-f F:ABFFnAranFB
8 df-f F:AxFFnAranFx
9 8 ralbii xBF:AxxBFFnAranFx
10 6 7 9 3bitr4i F:ABxBF:Ax