Metamath Proof Explorer
		
		
		
		Description:  A function on a finite set is finitely supported.  (Contributed by Mario
       Carneiro, 20-Jun-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | fisuppfi.1 |  | 
					
						|  |  | fisuppfi.2 |  | 
				
					|  | Assertion | fisuppfi |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fisuppfi.1 |  | 
						
							| 2 |  | fisuppfi.2 |  | 
						
							| 3 |  | cnvimass |  | 
						
							| 4 | 3 2 | fssdm |  | 
						
							| 5 | 1 4 | ssfid |  |