Metamath Proof Explorer
		
		
		
		Description:  If a set is closed under the union of two sets, then it is closed under
       finite union.  (Contributed by Glauco Siliprandi, 17-Aug-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | fiunicl.1 |  | 
					
						|  |  | fiunicl.2 |  | 
					
						|  |  | fiunicl.3 |  | 
				
					|  | Assertion | fiunicl |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fiunicl.1 |  | 
						
							| 2 |  | fiunicl.2 |  | 
						
							| 3 |  | fiunicl.3 |  | 
						
							| 4 |  | uniiun |  | 
						
							| 5 |  | nfv |  | 
						
							| 6 |  | simpr |  | 
						
							| 7 | 5 6 1 2 3 | fiiuncl |  | 
						
							| 8 | 4 7 | eqeltrid |  |