Description: If a set is closed under the union of two sets, then it is closed under finite union. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fiunicl.1 | |- ( ( ph /\ x e. A /\ y e. A ) -> ( x u. y ) e. A ) |
|
| fiunicl.2 | |- ( ph -> A e. Fin ) |
||
| fiunicl.3 | |- ( ph -> A =/= (/) ) |
||
| Assertion | fiunicl | |- ( ph -> U. A e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fiunicl.1 | |- ( ( ph /\ x e. A /\ y e. A ) -> ( x u. y ) e. A ) |
|
| 2 | fiunicl.2 | |- ( ph -> A e. Fin ) |
|
| 3 | fiunicl.3 | |- ( ph -> A =/= (/) ) |
|
| 4 | uniiun | |- U. A = U_ z e. A z |
|
| 5 | nfv | |- F/ z ph |
|
| 6 | simpr | |- ( ( ph /\ z e. A ) -> z e. A ) |
|
| 7 | 5 6 1 2 3 | fiiuncl | |- ( ph -> U_ z e. A z e. A ) |
| 8 | 4 7 | eqeltrid | |- ( ph -> U. A e. A ) |