Metamath Proof Explorer
Description: If a set is closed under the union of two sets, then it is closed under
finite union. (Contributed by Glauco Siliprandi, 17-Aug-2020)
|
|
Ref |
Expression |
|
Hypotheses |
fiunicl.1 |
|
|
|
fiunicl.2 |
|
|
|
fiunicl.3 |
|
|
Assertion |
fiunicl |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fiunicl.1 |
|
| 2 |
|
fiunicl.2 |
|
| 3 |
|
fiunicl.3 |
|
| 4 |
|
uniiun |
|
| 5 |
|
nfv |
|
| 6 |
|
simpr |
|
| 7 |
5 6 1 2 3
|
fiiuncl |
|
| 8 |
4 7
|
eqeltrid |
|