Metamath Proof Explorer


Theorem flddivrng

Description: A field is a division ring. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion flddivrng KFldKDivRingOps

Proof

Step Hyp Ref Expression
1 df-fld Fld=DivRingOpsCom2
2 inss1 DivRingOpsCom2DivRingOps
3 1 2 eqsstri FldDivRingOps
4 3 sseli KFldKDivRingOps