Metamath Proof Explorer


Theorem fldextfld1

Description: A field extension is only defined if the extension is a field. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion fldextfld1 E/FldExtFEField

Proof

Step Hyp Ref Expression
1 opabssxp ef|eFieldfFieldf=e𝑠BasefBasefSubRingeField×Field
2 df-br E/FldExtFEF/FldExt
3 2 biimpi E/FldExtFEF/FldExt
4 df-fldext /FldExt=ef|eFieldfFieldf=e𝑠BasefBasefSubRinge
5 3 4 eleqtrdi E/FldExtFEFef|eFieldfFieldf=e𝑠BasefBasefSubRinge
6 1 5 sselid E/FldExtFEFField×Field
7 opelxp1 EFField×FieldEField
8 6 7 syl E/FldExtFEField