Metamath Proof Explorer


Theorem fmpodg

Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Zhi Wang, 29-Sep-2025)

Ref Expression
Hypotheses fmpodg.1 φ F = x A , y B C
fmpodg.2 φ x A y B C S
fmpodg.3 φ R = A × B
Assertion fmpodg φ F : R S

Proof

Step Hyp Ref Expression
1 fmpodg.1 φ F = x A , y B C
2 fmpodg.2 φ x A y B C S
3 fmpodg.3 φ R = A × B
4 2 ralrimivva φ x A y B C S
5 eqid x A , y B C = x A , y B C
6 5 fmpo x A y B C S x A , y B C : A × B S
7 4 6 sylib φ x A , y B C : A × B S
8 1 3 feq12d φ F : R S x A , y B C : A × B S
9 7 8 mpbird φ F : R S