Metamath Proof Explorer


Theorem fmptdf

Description: A version of fmptd using bound-variable hypothesis instead of a distinct variable condition for ph . (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses fmptdf.1 xφ
fmptdf.2 φxABC
fmptdf.3 F=xAB
Assertion fmptdf φF:AC

Proof

Step Hyp Ref Expression
1 fmptdf.1 xφ
2 fmptdf.2 φxABC
3 fmptdf.3 F=xAB
4 2 ex φxABC
5 1 4 ralrimi φxABC
6 3 fmpt xABCF:AC
7 5 6 sylib φF:AC