Metamath Proof Explorer


Theorem fmtno

Description: The N th Fermat number. (Contributed by AV, 13-Jun-2021)

Ref Expression
Assertion fmtno N 0 FermatNo N = 2 2 N + 1

Proof

Step Hyp Ref Expression
1 df-fmtno FermatNo = n 0 2 2 n + 1
2 oveq2 n = N 2 n = 2 N
3 2 oveq2d n = N 2 2 n = 2 2 N
4 3 oveq1d n = N 2 2 n + 1 = 2 2 N + 1
5 id N 0 N 0
6 ovexd N 0 2 2 N + 1 V
7 1 4 5 6 fvmptd3 N 0 FermatNo N = 2 2 N + 1