Metamath Proof Explorer


Theorem fmtno2

Description: The 2 nd Fermat number, see remark in ApostolNT p. 7. (Contributed by AV, 13-Jun-2021)

Ref Expression
Assertion fmtno2 FermatNo 2 = 17

Proof

Step Hyp Ref Expression
1 2nn0 2 0
2 fmtno 2 0 FermatNo 2 = 2 2 2 + 1
3 1 2 ax-mp FermatNo 2 = 2 2 2 + 1
4 sq2 2 2 = 4
5 4 oveq2i 2 2 2 = 2 4
6 5 oveq1i 2 2 2 + 1 = 2 4 + 1
7 2exp4 2 4 = 16
8 7 oveq1i 2 4 + 1 = 16 + 1
9 1nn0 1 0
10 6nn0 6 0
11 6p1e7 6 + 1 = 7
12 eqid 16 = 16
13 9 10 11 12 decsuc 16 + 1 = 17
14 6 8 13 3eqtri 2 2 2 + 1 = 17
15 3 14 eqtri FermatNo 2 = 17