Metamath Proof Explorer


Theorem fmtno5lem1

Description: Lemma 1 for fmtno5 . (Contributed by AV, 22-Jul-2021)

Ref Expression
Assertion fmtno5lem1 655366=393216

Proof

Step Hyp Ref Expression
1 6nn0 60
2 5nn0 50
3 1 2 deccl 650
4 3 2 deccl 6550
5 3nn0 30
6 4 5 deccl 65530
7 eqid 65536=65536
8 9nn0 90
9 5 8 deccl 390
10 9 5 deccl 3930
11 1nn0 10
12 10 11 deccl 39310
13 8nn0 80
14 eqid 6553=6553
15 0nn0 00
16 0p1e1 0+1=1
17 eqid 655=655
18 eqid 65=65
19 6t6e36 66=36
20 6p3e9 6+3=9
21 5 1 5 19 20 decaddi 66+3=39
22 6cn 6
23 5cn 5
24 6t5e30 65=30
25 22 23 24 mulcomli 56=30
26 1 1 2 18 15 5 21 25 decmul1c 656=390
27 3cn 3
28 27 addlidi 0+3=3
29 9 15 5 26 28 decaddi 656+3=393
30 1 3 2 17 15 5 29 25 decmul1c 6556=3930
31 10 15 16 30 decsuc 6556+1=3931
32 6t3e18 63=18
33 22 27 32 mulcomli 36=18
34 1 4 5 14 13 11 31 33 decmul1c 65536=39318
35 1p1e2 1+1=2
36 eqid 3931=3931
37 10 11 35 36 decsuc 3931+1=3932
38 8p3e11 8+3=11
39 12 13 5 34 37 11 38 decaddci 65536+3=39321
40 1 6 1 7 1 5 39 19 decmul1c 655366=393216