Metamath Proof Explorer


Theorem fndmd

Description: The domain of a function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis fndmd.1 φFFnA
Assertion fndmd φdomF=A

Proof

Step Hyp Ref Expression
1 fndmd.1 φFFnA
2 fndm FFnAdomF=A
3 1 2 syl φdomF=A